How to Remove Empty List In Pandas?

4 minutes read

To remove empty lists in pandas, you can use the apply() function along with a lambda function to filter out the empty lists. You can apply this function to the column containing lists in your DataFrame and overwrite the original column with the filtered lists. Another option is to use the dropna() function with the subset parameter set to the column containing lists, which will remove any rows with empty lists. Both methods will help you clean your data by removing any unwanted empty lists.


How to remove empty list in pandas with drop_duplicates() function?

If you have an empty list in a pandas DataFrame and you want to remove it using the drop_duplicates() function, you can do so by first converting the empty list to NaN values and then dropping duplicates. Here's an example of how you can achieve this:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
import pandas as pd

# Create a sample DataFrame with an empty list
data = {'col1': [1, 2, []],
        'col2': [3, [], 4]}
df = pd.DataFrame(data)

# Replace empty lists with NaN values
df = df.applymap(lambda x: None if x == [] else x)

# Drop duplicates
df.drop_duplicates(inplace=True)

print(df)


This will result in a DataFrame where the rows containing empty lists have been removed.


How to remove specific empty lists in pandas based on conditions?

You can remove specific empty lists in pandas based on conditions by filtering the dataframe using the apply() function and a lambda function to check for the conditions. Here's an example:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
import pandas as pd

# Sample dataframe with a column containing lists
data = {'col1': [[], [1, 2, 3], [4, 5], [], [6, 7, 8]]}
df = pd.DataFrame(data)

# Function to remove empty lists
def remove_empty_lists(lst):
    if len(lst) == 0 or all(isinstance(x, pd.NA) for x in lst):
        return None
    return lst

# Applying the function to filter out empty lists
df['col1'] = df['col1'].apply(lambda x: remove_empty_lists(x))

# Removing rows with None values in the 'col1' column
df = df.dropna(subset=['col1'])

print(df)


In this example, the remove_empty_lists function checks if a list is empty or contains only NA values. If the condition is met, it returns None; otherwise, it returns the original list. The lambda function is then used with the apply() function to apply the remove_empty_lists function to the 'col1' column. Finally, rows with None values in the 'col1' column are dropped using dropna() to remove the specific empty lists based on the conditions.


How to remove empty list in pandas by using interpolate() method?

You can remove empty lists in a pandas DataFrame by using the interpolate() method along with the apply() function. Here is an example code snippet:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
import pandas as pd

# Create a sample DataFrame with empty lists
data = {'A': [[], [1, 2], [], [3, 4, 5], [], [6, 7]],
        'B': ['foo', 'bar', 'baz', 'qux', 'quux', 'corge']}
df = pd.DataFrame(data)

# Function to remove empty lists
def remove_empty_list(row):
    row = [elem for elem in row if elem] # Remove empty lists
    return row

# Apply the remove_empty_list function to each row of column 'A'
df['A'] = df['A'].apply(remove_empty_list)

# Interpolate the missing values
df['A'] = df['A'].apply(lambda x: pd.Series(x).interpolate().tolist())

print(df)


In this code, we first create a sample DataFrame with a column 'A' containing empty lists. We then define a function remove_empty_list() to remove empty lists from each row of 'A'. Next, we apply this function to each row of column 'A'. Finally, we interpolate the missing values using the interpolate() method.


This will remove the empty lists and interpolate the missing values in the DataFrame.


How to remove empty list in pandas by dropping columns with all NaN values?

You can remove empty columns in a pandas DataFrame by dropping columns with all NaN values. Here's how you can do it:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
import pandas as pd

# Create a sample DataFrame
data = {'A': [1, 2, None, 4],
        'B': [None, None, None, None],
        'C': [None, None, None, None],
        'D': [5, 6, None, 8]}
df = pd.DataFrame(data)

# Drop columns with all NaN values
df.dropna(axis=1, how='all', inplace=True)

print(df)


This code will drop columns 'B' and 'C' from the DataFrame since they contain all NaN values. The resulting DataFrame will have only columns 'A' and 'D'.


How to remove empty list in pandas by filtering out NaN values?

You can filter out NaN values from a pandas DataFrame by using the dropna() method. Here's an example:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
import pandas as pd

# create a sample DataFrame with empty lists and NaN values
data = {'col1': [[], [1,2,3], [4,5,6], np.nan], 'col2': [np.nan, np.nan, np.nan, np.nan]}
df = pd.DataFrame(data)

# remove empty lists and NaN values
df_filtered = df.dropna()

print(df_filtered)


This will remove rows containing empty lists and NaN values, leaving only rows with valid values.

Facebook Twitter LinkedIn Telegram

Related Posts:

In pandas, you can easily filter a DataFrame using conditional statements. You can use these statements to subset your data based on specific column values or criteria. By using boolean indexing, you can create a new DataFrame with only the rows that meet your...
To remove single quotation marks in a column on pandas, you can use the str.replace() function to replace the single quotation marks with an empty string. First, make sure the column is of string type by using the astype(str) function. Then, use the str.replac...
In Laravel, you can display content if data is empty by using conditional statements in your blade template. You can use the @if directive to check if the data is empty, and then display your content accordingly. For example, you can use the following code sni...
To make a pandas dataframe from a list of dictionaries, you can use the pd.DataFrame constructor in pandas library. Simply pass your list of dictionaries as an argument to the constructor and it will automatically convert them into a dataframe. Each dictionary...
To convert XLS files for pandas, you can use the pd.read_excel() function provided by the pandas library in Python. This function allows you to read data from an Excel file and create a pandas DataFrame.You simply need to pass the file path of the XLS file as ...